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Collaborators at PARC, DEC SRC, and 
Microsoft

• Butler Lampson (Bcc500, MAXC, Alto, Dorado, Firefly, AN1, AN2, 

Tablet PC)

• Ed McCreight (Alto)

• Mike Schroeder (Firefly, AN1, AN2)

• Roy Levin (Firefly)

• Andrew Birrell (Firefly, Beehive)

• And dozens more...



Thesis

• Computer architecture has hit a wall.

• This will require us to build future systems in new 
ways.

• New systems will require changes in the way we 
program them.

• In designing future systems, we should examine 
some of the decisions made in the past.  Some 
choices we made may be less relevant, and paths 
not taken might be more appropriate today.



Forty years of progress

Item Alto, 1972 My home PC, 

2010

Factor

CPU clock rate 6 MHz 2.8 GHz (x4) 1900

Memory size 128 KB 6 GB 48000

Memory 

access time

850 ns 50 ns 17

Display pixels 606 x 808 x 1 1920 x 1200 x 32 150

Network 3 Mb 

Ethernet

1 Gb Ethernet 300

Disk capacity 2.5 MB 700 GB 280000



Exponential drivers for computing

• Rotating magnetic storage

– Today, we can store every bit of information we 
receive during a lifetime on a few disks.

• Glass fibers

– No two points on earth are more than 50ms apart.

– Bandwidth is no longer scarce.

• Semiconductors and Moore’s Law

– Often misunderstood



The nature of the wall, and some 
review

• P = C * V2 * f
– Relates power, capacitive load, operating voltage, and 

frequency

• If we scale C and V by k:  P’ = C/k * (V/k)2 * f’ 
• = (C * V2 * f’) / k3

– k is the “feature size”.  90nm -> 45 nm is k = 2.
– New chip is 1/k2 in size, 1/k3 the power at the same 

frequency.

• If f’ = k * f, the power per unit area is unchanged.
• Semiconductor makers have used scaling in different 

ways.



Scaling for Memories and CPUs

• RAM manufacturers used scaling to improve density.
– Lower voltage, somewhat higher frequency and power, but 

lots more bits.

• CPU manufacturers took another path: higher clock 
rates, more complex designs.
– Result:  CPUs got very hot (the power wall).
– Memories got bigger, but not much faster (the memory 

wall).

• Future trend:  Rather than a single fast CPU, we will see 
many simpler CPUs on each chip.
– Moore’s law is not at an end.

• This has profound effects on software.



Example 1: Virtual Memory

• Introduced in the Manchester Atlas (’60s).
– 16 KW core memory (small, fast).
– 1 MW magnetic drum (large, slow).

• Simple idea: Make the core memory appear to be as 
large as the drum.
– Divide core into 32 512-word pages.
– Use an associative memory (TLB) to map virtual (drum) 

addresses to real (core) addresses.
– Also used a “learning program” to decide which pages to 

transfer back to drum.

• Used in most computers today.
– Except supercomputers and embedded systems.



VM continued

• As system speed and size increased, problems 
arose:
– Memories grew faster than page size. => larger tables.

– Associative memories are expensive and slow. => 
cached page tables.

– Multiprogramming. => more tables.

• Approaches: paged tables, segments, paged 
segments.

• Sometimes paging has unanticipated 
consequences.



Problems VM still solves today

• Protection
– This will be a problem as long as we program in 

languages with pointers.

• Relocation
– Segments are simpler.

• Fragmentation
– Compacting garbage collectors?

• Note: Size of real memory is no longer a problem.
• VM was invented in a time of scarcity. Is it still a 

good idea? 



Example 2: Memory coherence

• Until the ’70 coherence wasn’t an issue, but 
caches changed this.
– With uniprocessors, we only needed to worry about 

I/O coherence.
– With early multiprocessors, bus-based snooping 

protocols were adequate and simple.

• With the larger-scale multiprocessors of the ‘80s, 
more complex protocols were needed.
– Busses no longer worked. Point-to-point links were 

needed.
– Protocol complexity skyrocketed, requiring formal 

methods to ensure correctness.



Coherence vs. Message-passing

• Why did we choose coherent memory?

– After all, message-passing and shared memory are 
duals.

– Messages are much simpler.

• Possibility 1:  Programming is easier.

• Possibility 2:  We could make it work adequately 
at small scale, and didn’t foresee the complexity 
that larger scales would introduce.

• Would we make the same choice today?



Example 3: Threads and locks

• Lock-based programming is still hard.
– Coarse grained locking is easy, but inefficient.
– Fine-grained locked is difficult to reason about and get right. 

Bugs are frequently Heisenbugs.
– Lock-based abstractions don’t compose.
– Even with “best practice” guidance by experts, programmers 

struggle.

• In the era of many-core systems, programs can’t be written 
by only “the best people”.

“I am convinced more than ever that this 
type of work is very difficult, and that 
every effort to do it with other than the 
best people is doomed to either failure or 
moderate success at enormous cost”.
Edsger Dijkstra, 1968



Alternatives to locks: Transactional 
memory?

• Lots of designs, mostly for STM.
• TM has problems of its own:

– I/O
– Coarse/fine grain arguments.
– Transactions are speculation.

• And if a transaction aborts work and energy are wasted.

• Main problem: We don’t have much experience in 
using TM.
– Need some implementations
– Need benchmarks
– Need real systems

• Pure message passing is another contender.



Example 4: Complex CPUs

• ‘50s and ‘60s: The age of experiment

– Decimal CPUs, String processors, Single-language 
CPUs (Lisp, Fortran, Algol), Stack machines.

• ‘70s and ‘80s: Consolidation and religious 
warfare:

– RISC (IBM, Stanford, Berkeley) vs CISC (x86).

– Lots of papers about the advantages of each, 
which gradually died out as each camp adopted 
techniques from the other.



Complex CPUs

• ’90s – today: Elaboration and the quest for ILP.

– Multi-level cache hierarchies

– Multithreading

– Speculative execution everywhere.

– Incremental advances in performance at the cost 
of lots of complexity, and lots of power.

– The problem: Most sequential programs don’t 
exhibit very much ILP.



Possible directions for CPUs

• Intel Single-chip Cloud Computer

– Lots of simple cores

– No coherence

– Highly efficient inter-core network

– Efficient message passing

• Low power cores (Intel, AMD)

– Recognition that for many applications, today’s 
systems are fast enough.

– I don’t need to spend 100 watts to edit a presentation.



Example 5: Interrupts

• Do we need hardware interrupts?

– In a world with many cores on each chip, their value 
seems less than when an idle CPU represented 
substantial waste.

– They increase hardware and software complexity 
substantially.

• It is possible to build systems without interrupts.

– The BBN Pluribus (1972).  ARPAnet IMP V2.

“..an interrupt system to fall in love with
is certainly an inspiring feature”
Edsger Dijkstra, 1968



Exploring future architectural ideas:
Beehive

• Implemented on a single FPGA development board.
– Simple Verilog description (6K lines) that can be understood and modified by 

students. Our first users are MIT students.
– Tool chain: MSIL and C compilers, assembler, simulator.
– Licensed for research use.

• System provides:
– 13 simple RISC cores.  100 MIPs each.
– 1Gb Ethernet
– Display control
– 2 GB shared RAM.  Non-coherent.
– Message passing.  No interrupts.
– Hardware supported semaphores.

• Not intended to be competitive with “real” systems, but to be much more 
malleable, and much faster than simulators.

• Can run “real software”, e.g. complete OS .   



Beehive Core



Beehive  ring



Example 6: Packet-switched networks

• Today’s large data centers provide an opportunity 
for us to reexamine local-area networking.

• Data centers are not the Internet:
– Known topology, known names

– Small diameter => low latency

– Fewer end nodes.
• Tens of thousands, not hundreds of millions

– Faster inter-switch links
• 10 Gb today, 40 and 100 Gb/sec soon.

– Different traffic patterns.



Why use packet switching?

• Adequate performance, at least initially.

– 3 Mb/s was fast enough, even for voice.

• Retransmission on packet loss worked because 
of small network size.

• Short addresses weren’t a problem in small 
networks.



Faster, more reliable links brought 
problems

• Point-to-point links rarely make errors, but 
switches/routers still need large buffers.
– And latency suffers.

• Routing decision at each switch along a path are 
complex.
– Need more processing per packet.

• Switch/router complexity grew, and reliability suffered.

• Packet switching is problematic at 40/100 Gb/s.
– Window-based congestion control is inefficient with 

thousands of packets in transit.

– Sources get feedback after the damage is already done.



Should we revisit circuit switching?

• Circuit switching (ATM) is used in the Internet 
backbone.

• Admission control rather than congestion control is 
used to avoid data loss.

• Routing is determined at call setup, and doesn’t change 
dynamically.

• The key is to make call setup time << transmission 
time.

• This can work if the number of hops is small and the 
links are relatively short.

• Switches require almost no buffering.



A possible arrangement



Some final thoughts

• The systems of the 21st century are different.

• We should rethink earlier design decisions based 
on new realities.

• Computers still can’t do a lot of things, so we still 
have challenges:
– Drive my car

– Learn my preferences, and be a colleague rather than 
a slave

– Help educate my grandchildren.

– Enhance my privacy, rather than eroding it.


